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An infinitesimal centre disturbance is imposed on a fully Ldveloped plane 
Poiseuille flow at a Reynolds number R slightly greater than the critical value 
R, for instability. After a long time, t ,  the disturbance consists of a modulated 
wave whose amplitude A is a slowly varying function of position and time. In  
an earlier paper (Stewartson & Stuart 197 1) the parabolic differential equation 
satisfied by A for two-dimensional disturbances was found; the theory is here 
extended t o  three dimensions. Although the coefficients of the equation a,re 
coinples, a start is made on elucidating the properties of its solutions by assuming 
that these coefficients are real. It is then found numerically and confirmed 
analytically that, for a finite value of (R-R,)t, the amplitude A develops an 
infinite peak at the wave centre. The possible relevance of this work t o  the 
phenomenon of transition is discussed. 

1. Introduction 
Consider Poiseuille flow under pressure between two fixed parallel planes at  

a Reynolds number R = Uoh/v, where U, is the maximum velocity of the fluid, 
2h is the distance between the planes and v is the kinematic viscosity. We choose 
a set of Cartesian axes Oxyx with origin 0 at some convenient point on the plane 
midway between the fixed planes, hx measuring distance in the direction of 
flow, hz distance in the direction perpendicular to the planes and hy distance in 
the spanwise direction. Then if (Uou, U,v, U,w) are the components of fluid 
velocity in the x, y, x directions respectively, the steady motion is given by 

u=1--22, v = w = o ,  (1.1) 

with the fixed planes at  x = 5 1. 

turbances, the velocity components are taken to be 
In the classical theory of the stability of this flow to plane infinitesimal dis- 

- - 
= 1 - 22 + A  eiab-ct)  (d@&z), w = - iaA eia(x-ct) @I(.+ v = 0, (1.2) 
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where htlU, measures time, 2 is a constant whose square is negligible and a is 
given as a real wavenumber. The complex wave velocity c must be found, to- 
gether with the eigenfunction $,@) normalized so that $,(O) = 1. On substitution 
into the Navier-Stokes equations, it is found that must satisfy the fourth- 
order linear homogeneous Orr-Sommerfeld equation. The no-slip conditions at  
the fixed planes can be satisfied non-trivially only if c, a and R satisfy a certain 
functional relationship of the form 

f(a,c, R)  = 0. (1 .3)  

For R less than a critical value R, it is known that Imc = ci is negative for all 
real values of a, and it may be inferred that the basic flow is stable to infinitesimal 
(but not necessarily to finite) disturbances. The lowest value of R for which ci 
vanishes is R = R, ( = 5774),  with a = a,( = 1-0202). For other values of a, ci < 0 
when R = R,, while there is a range of values of a for which ci > 0 in the case of 
R > R,. In  the neighbourhood of R = R, and a = a, the complex growth rate 
- iac, may be expanded as a double Taylor series: 

(1 .4)  - iac = - ia, c, + ia,,(a - a,) - a2(a - aJ2 + (R  - R,) d, + . . . , 
where c,,, a, are real constants and a$, d, are complex constants with positive 
real parts. Their values, together with the values of R,, a, quoted above, have 
been kindly computed on behalf of the authors by Mr R. R. Cousins. He finds that 

(1 .5)  

The extension of this linearized theory to the study of the evolution of 
arbitrary infinitesimal disturbances has attracted much interest in recent years. 
The object of such investigations is to understand the phenomenon of transition, 
but we emphasize at once that there are formidable difficulties to be overcome 
before such studies can be applied to that phenomenon. One of these is that, for 
plane Poiseuille flow, transition can occur at Reynolds numbers of order +R,; 
in Blasius flow, on the other hand, wave motions can occur for Reynolds numbers 
significantly lower than R,, although the transition is not complete until R is of 
order 4R,. The value of such theoretical studies is clearly limited, therefore, but 
the understanding of the evolution of infinitesimal disturbances can be regarded 
as an essential first step towards the understanding of the evolution of the non- 
linear disturbances presumably present in transition. In  order to derive the 
maximum benefit from such studies, however, it is important t o  make the basic 
assumptions as clear as possible and to insist that the theory is mathematically 
consi&ent. It should then be easier to assess the errors that arise if the theory 
is applied t o  situations of greater practical interest, when the basic assumptions 
of the theory are not strictly justified. 

As a first step in such a theory, in a paper which we now refer to as I, Stewartson 
& Stuart (1971) suppose that at some instant of time the fluid is in steady motion 
with the velocity distribution defined by (1.1) and with (R-R,)  small but 
positive. An arbitrary two-dimensional infinitesimal disturbance of charac- 

1 c,,, = 0.2640, 
a2 = 0.183 + O.O7Oi, 

a, = -0.384, 
d, = (0.17 + 0-80i)  
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teristic amplitude A, centred on the plane x = 0, is then imposed on the flow. 
They define 

(1.6) 8 = (R - R,) dp, 

and assume that s < l ,  A < l .  (1.7) 

The growth of this disturbance is traced in I and it is shown that, when R > R,, 
t 9 1, st < 1 and (x+a,,tl < la,tl, the velocity component w is proportional to 

where E = exp [ia,(x - c, t ) ] ,  (1.9) 

and u can be obtained from the continuity equation. Here $ , (x )  is the eigen- 
function of the Orr-Sommerfeld equation associated with a = ac, R = R,. The 
form (1.8) is derivable from a synthesis of modes like (1.2). 

When t becomes so large that st is not small, the velocity field is not given by 
linear theory because of the exponential growth of w near x + a,t = 0. For this 
reason a self-consistent nonlinear theory is developed in I and may be summarized 
as follows. With scaled variables 7 and 5 defined by 

r = et, = s*(x+a,,t), 

an expansion of w in powers of €4 of the form 

(1.10) 

w = - iaCdA(r,  [) E$,(z) + O(E) (1.11) 

is consistent with the Navier-Stokes equations only if 

(1.12) 

The same equation has been derived by Watanabe (1969) for nonlinear in- 
stability waves in the one-dimensional flow of a plasma. However the derivation 
is simpler there, because there is no shear in the basic state corresponding to ( 1.1 ) . 
Moreover, there i s  the difference that in his paper a2, d, and k are all imaginary. 
In  the context of fluid mechanics DiPrima, Eckhaus & Segel(l971) have obtained 
(1.12) for a more general class of flows, including plane Poiseuille flow, by a less 
direct and more complicated method. The properties of (1.12) are therefore seen 
to be central to the understanding of the nonlinear evolution of infinitesimal 
disturbances, and it is important to understand those properties fully, not only 
in the context of plane Poiseuille flow, but for general values of the constants. 

With the definition $,(O) = 1, so that dAdo  is the amplitude of the velocity 
perturbation, the value of k at a = a,, R = R, has been computed by Reynolds 
& Potter (1967) to be $a: (1 9.7-1 1 li) when there is constant mass flux. (The factor 
#a: allows for a difference in velocity scale.) A somewhat different value is given 
by Pekeris & Shkoller (1967, 1969); their calculation, however, is for constant 
pressure gradient, a requirement which is not justified for the disturbances we 
have in mind (see I ,  equation (3.14)). We also note that k changes rapidly with 
both a and R. 

The final result stated in I is the initial condition satisfied by A as T +- 0. This 
follows from the terminal form (1.8) of the linearized theory by identifying it 

45-2 
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with (1.11) in the limit e --f 0, with 7 < 1 (T = d ) .  The error term (x+a,,t)/a,t in 
(1.8) is O(&/a27) when (1.10) is used, and we have 

A z (A/79) exp ( -  t 2 / 4 u 2 ~ )  as 7 --f 0. (1.13) 

Thus the growth of A is centred on t = 0 as T -+ 0; since we are concerned only 
with the evolution of a centred disturbance, we also require 

IAl - t o  as 161 +0O, (1.14) 

for r > 0. If this condition were violated, it would mean that A would be subject 
to the influence of disturbances emanating from, or present at, large distances. 
Furthermore, (1.13) may be contrasted with the work of Stuart (1960), who 
implicitly assumed an initial disturbance in the form of a normal mode with no 
spatial modulation. This is equivalent to taking A = constant at 7 = 0. 

Our aim in the present paper is twofold. First, we wish t o  generalize (1.12) to 
treat arbitrary three-dimensional disturbances. This is achieved in $ 2  by the use 
of Squire’s theorem (1933) relating the properties of three-dimensional perturba- 
tions to those of two-dimensional perturbations as given by solutions of the 
Orr-Sommerfeld equation and by use of a simple relation between (1.12) and 
(1.4). Second, in § $  3-5 we begin a study of the properties of (1.12) for the case 
in which all the coefficients are real and k > 0. I n  $ 6 we make a similar study of 
the equivalent equation for three-dimensional perturbations and in 3 7 we discuss 
the solutions of the equation corresponding to (1.12) for subcritical flows. Finally, 
in $8  we comment on the possible relevance of the theory to  the phenomenon 
of transition. Extensions of the theory to  complex values of the coefficients have 
been made by Hocking & Stewartson (1971, 1972). 

Since the equation (1.12) with real coefficients, but with k < 0, has already 
appeared in the studies by Newell & Whitehead (1969) and Segel (1969) of non- 
linear disturbances in BBnard convection, it is worth noting that the change in 
sign of k makes a crucial difference to the structure of the terminal solution. 
For example, let LIS take a2 = d, = 1 and suppose k = - 1. Then 

aA azA 
-=  -+A-A3, 
a7 a t 2  

and if A is a constant, A,, a t  7 = 0,  

A,, eT 

[I -A2,+A$e27]+ 
A =  for 7 20,  

(1.15) 

(1.16) 

so that A -+ 1 as 7 --f co, which is the terminal solution. Another possibility for 
the terminal solution as 7 -+ 00 is that A tends to a function of only. Such solu- 
tions have been exhibited numerically by Newell & Whitehead for bounded 5 
and are periodic and nearly of square-wave form. No solutions in which A be- 
comes infinite as T increases have been found; moreover, it does not seem likely 
that solutions which satisfy the physical requirement of a centred disturbance, 
namely that A -+ 0 as 151 -+ 00, exist. 

If, on the other hand, we take a2 = d, = P and k = + 1 we have to solve 

(1.17) 
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Application of the condition A = A ,  = constant at r = 0 yields 

(1.18) 

which has the terminal solution A + co as r -+ ro = Q log (1 + A;2). In  this paper 
we find solutions of (1.17) when the initial condition is that A is a function of 6; 
in most cases, we find that A -+ 00 as a certain finite value of r is approached, but 
at one value of 6 only. The solutions have the character that as r increases from 
zero, A spreads outwards as a function of f ; ;  moreover, after a brief initial fall, 
the maximum value of I A 1 increases with r .  Eventually the cubic term in (1.17) 
dominates, causing an amplification of the rate of increase of the maximum value 
of \ A  1 and, for the relative magnitude, a reversal of the outward spreading in 6. 
Indeed, a focusing phenomenon occurs and A approaches a delta function form 
near its maximum. The theory of course breaks down just before the delta func- 
tion is achieved, specifically when &A = O(S).  In  physical terms, the burst then 
occupies a length O(hllogs[4) of the channel. A similar situation occurs in the 
three-dimensional problem, in which a term a2A/aQ2 is added t o  the right-hand 
side of (1.17). 

2. Three-dimensional disturbances 
In  order to develop the appropriate generalization of (1.12) to include three- 

dimensional disturbances, it is convenient t o  begin by reconsidering the relation 
between (1.12) and (1 .a). If we neglect the nonlinear term in (1.12) the resulting 
linear equation has solutions of the form 

A = ePT+iY5 ,  

where y is a real constant and 
p = -a,y2+d,/d,. 

Hence the general linear form of EA(r,  t) ,  in terms of x and t ,  is 

exp{(pe+iya,sg-ia,c,,)t+ (iyet+ia,)x}, (2.3) 

which, when multiplied by $l(z), gives the form of w in (1.11). Furthermore, on 
making the identifications 

d y  = a-a,, ps+iyalre+-iacc,, = -iac 

and using (1.6), we can equate (2.3) to the exponential assumed in the velocity 
structure (1.2), and also equate (2.2) t o  (1.4). Thus the linear terms in (1.12) 
could have been derived immediately from the relation (1.4), which is as it 
should be. For, any combination of solutions of the linearized disturbance 
equation with wavelengths approximately equal to 27rla, can have its leading 
term put into the form 

where A(r,C) is a combination of terms like (2.1), and if we now ask what dif- 
ferential equation such an A must satisfy, we recover (1.12). 

Alternatively, we may derive the form of the differential equation for A as 

f )  $&), (2.4) 
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follows. Let us assume that A ,  as a function of x andft,!satisfies an equation of the 
general form 

where the 8, are independent constants. If A is independent of x, corresponding 
to CI = a,, then 81 represents the complex growth rate and, with R slightly greater 
than R,, 0,, is small and positive (8, = Re O1). Furthermore, if A is given by (2.1) 
we have 

and since the growth rate, which is given by the real part of ep, is a maximum at 
a = a,it follows that 8, must be real. No other significant restrictions are available 
but if we now look for solutions in which A is a slowly varying function of t 
and x, it  is natural to write 6,t = T ,  0,x = x. If we were to proceed to the 
limit 8, --f 0, holding T and x finite, all but the first two terms of the right-hand 
side of (2.5) would vanish and we would be left with a first-order equation for A .  
This tells us that the important independent variable is x - 0,T, and on writing 
(x-8,t) 8tT = X we reduce (2.5) to 

€$I = 8,-6,iy€+ = 8,-B2i(a-CI,), 

where ti2 = -85+82i34-8i83 and the relative error is O(&). The form (2.6) is 
not unique, since x can replace T as an independent variable, but the only 
change in (2.6) is that BA/BT is replaced by O,aA/ax (compare with equation 
(5.1) of I). It is important to note that (2.6) cannot be extended; the higher order 
terms of (2.5) can only appear as small perturbations of (2.6). Having determined 
the form of the differential equation satisfied by A we can fix the values of the 
coefficients by a straightforward use of (1 -4). This yields the linear terms in (1.12). 

Let us next consider the nonlinear term. This arises from the inertia terms in 
the Navier-Stokes equations and involves products of derivatives with respect 
to x, z and t. However, A is a slowly varying function of x and t ,  and the leading 
nonlinear term must involve differentiations of E and $,(z) rather than A .  Con- 
sequently the nonlinear term in (1.12) can contain no derivatives of A .  Moreover, 
it must be identical in form with, and contain the same constant k as, the non- 
linear term of the simple time-dependent equation (Stuart 1960). 

It remains to derive the initial condition on A when T < 1 but t 9 1.  For this 
we neglect the nonlinear term of (1.12) and rewrite this equation in terms of t 
and X now defined to  be x + a,$. We obtain 

aA 8 A  €dl 
-- u, - - -A  = 0, 
at ax, a, 

and look for solutions in which A -+ 0 as 1x1 -+ 00 for fixed t. All such solutions 
are combinations of solutions of (2.7) of the form 

A ,  = t-*(n+ly,(y) exp (ed,t/d,,) (y  = X(u2t)-3), (2.8) 

t-&"+l'f,(y) = O(X-n-l), (2.9) 

where n+ 1 > 0, f, is related to the parabolic cylinder functions and f, -+ 0 as 
Iyl -+a. In  general, f, is only algebraically small when \yl is large and con- 
sequently 
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when IyI 1. Such a form is incompatible with our assumption of a centred 
infinitesimal disturbance at t = 0 for it suggests that the disturbed region is 
unlimited for all t > 0. These solutions correspond, we expect, to those resulting 
from the appearance of branch points in the Fourier-Laplace transforms referred 
to in I (p. 533). In  order to avoid them we must choose n to be a positive integer 
or zero. Then the relevant solutions are linear combinations of 

(2.10) 

together with its derivatives (of all orders) with respect to X and t. The exponen- 
tial decay of these solutions as 171 -+ 00 ensures that the disturbance is centred 
on X = 0, and we note that they correspond to the poles in the Fourier-Laplace 
transform in I .  Consequently, when t is large A must be proportional to (2.10), 
and the appropriate initial condition for A in (1.12) is 

(2.11) 

where A is a representative amplitude of the disturbance at  t = 0. 
We are now ready t o  generalize (1.12) to include three-dimensional disturbances 

initially centred on 0. An extended argument of the kind presented in I can be 
used to achieve this generalization, but here we obtain it by following the lines 
of argument set out above for the two-dimensional case. Both methods lead to 
the same fundamental equation. 

Analogously to (1.2), we assume that as a result of a certain infinitesimal dis- 
turbance the velocity components are 

u = 1 - x2 + Ui(z) exp [iax + ipy - iact], 
(2.12) 1 (w, w) = ( K ( z ) ,  W , ( x ) )  exp [iax + ipy - iact], 

where U,, V,, W, are functions of x whose squares and products can be neglected. 
As before, the Navier-Stokes equations can only be satisfied by a solution of the 
form (2.12) if a, p, c and R satisfy a certain functional relationship which, as 
Squire (1933) showed, may be pub into the form 

f{(a2 + p2)*, C, aR(a2 +p2)-*) = 0, (2.13) 

which is equivalent to the two-dimensional form (1.3) at a lower Reynolds 
number, but at  the same value of c. Iti follows that, if B is small, any value of 
IpI $ €3 will reduce the effective Reynolds number to a value less than R, and 
the corresponding solution will be stable. Hence we must assume /3 N d, so that 
the functional form (1.4) generalizes to 

- im( 1 + /32/2a;) = - ia,c, + ia,(a - a, + /32/2a,) 

- az(a - ac +pZ/2aJ2 + d,[R( 1 -P2/2a3 - R,] + . . ., (2.14) 

d,(R -R,) - bZP2 + ..., (2.15) 

which can be written 

-iac = -ia,c,+ia,,(a- a,) -az@- 

where (2.16) 
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using Cousins’s numerical results. An argument entirely parallel to the earlier 
discussion of the two-dimensional disturbances shows that when t 9 1 and 
et = 7 Q 1 the characteristic amplitude A of the velocity components must be a 
function of T,[ and 7, where 7 and 6 are defined by (1.10) and 

’I = “y. (2.17) 

Instead of (1 .11)  we now have, for the z component of velocity, 

w = - iac€*EA(7, [ ,7) $l(z) + O(s) ,  (2.18) 

with corresponding expressions for the other velocity components. Equation 

aA P A  PA d 
- - a z - - 6 z - - ~ A  = klA12A. 

(1.12) becomes 

a7 age a72 a,, (2.19) 

As in the two-dimensional case, there can be no derivatives in the nonlinear term, 
and (2.19) is the required generalization of (1.12). 

It remains to derive the initial condition on A when r Q 1 but t 9 1. For this 
we neglect the right-hand side of (2.19) and rewrite it in terms of t ,  y and 
X = z+u,,t. We obtain 

(2.20) 

and look for solutions in which A -+ 0 as ( X z  + y2) -+ co for fixed t .  All such solu- 
tions must be linear combinations of 

(2.21) 

and its dcrivatives, of all orders, with respect t o  X and y. When 2 is large, the 
leading term in A must be proportional to (2.21) and the appropriate initial 
condition for A in (2.19) is 

A A d  z - e x p ( l - - -  d r t2 
7 d, 4u2r 4b2r 

(2.22) 

where A is a representative amplitude of the initial disturbance. It is noted 
that the index of 7 is reduced from - to - 1 on changing from two- to three- 
dimensional disturbances. I n  fact, with r small (2.22) can be written as the 
product of two terms like (1.13), one for the [ variation and one for the 7 variation. 

Another possible form of initial disturbance is an oblique wave system, which 
exhibits a preference for some direction in the x, y plane. Suppose, for example, 
that initially 21 is of the form 

2r = A eincZfl(n: + my, x ) ,  (2.23) 

where fl is an arbitrary function and m is a constant, with corresponding forms 
for [u - (1  - x z ) ]  and w. Then, by similar arguments, the initial condition on (2.19) 
when t 9 1 and 7 < 1 is 

(2.24) 

Although this form of disturbance is artificial, it is worth examining in order to  
establish the consistency of our approach. Throughout this discussion we have 
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required that A -+ 0 as infinity is approached away from the centre of the con- 
vected disturbance, be it the point x+a,,t = y = 0, as in (2.22)) or the line 
x+a,,t+my = 0, as in (2.24). In  order to be consistent, (2.22) and (2.24) must 
exhibit this property and so Re (aZ + nz2bz) > 0 for all real m. Using the numerical 
values (1.5) and (2.16) we find that this condition is satisfied. The fact that Re b, 
is only just positive is not a lucky accident but a reflexion of the slow variation 
of ci with Reynolds number near R = R, when a = a,. 

It is interesting to compare (2.19) with the equation derived by Newell & 
Whitehead (1969) and by Segel(1969) for the corresponding problem in BBnard 
convection. In  this problem there is no preferred direction except that imposed 
by the choice of disturbance, whereas in our problem the direction of the initial 
steady flow provides such a preference. Newell & Whitehead consider distur- 
bances whose main variations occur in the x and x directions, so that x is their 
preferred direction. It then follows that the coefficients corresponding to c,,, a,,, 
aZi and dli in (1.4) are all zero and the equivalent of Squire’s theorem simply 
replaces a by (az +pZ)4 and leaves ac and R unchanged, because there is no mean 
convection in the Benard problem. Thus (1.4) takes the form 

- i a c  = - a z ~ [ ( ~ z + / 3 2 ) 4 - a c ] 2 + d ~ ~ ( ~ - ~ c ) +  ...) (2.25) 
which reduces to 

- i ac  = - azr[(a - a,) + (P”2ac)]2 + d,,(R - 8,) + . . . (2.26) 

when CI - a, and p are small. If the variation in the y direction is ignored, /3 = 0 
and the analogue of (1.12) is 

(2.27) 

where is a known constant. The only significant difference between (2.27) and 
(1.12) is that & is real and positive. When, however, the variation in the y direc- 
tion is introduced, (2.26) shows that the appropriate scaling for y is 

r = sty (2.28) 

instead of (2.17). The method explained in this section then leads quite simply to 

(2.29) 

which is quite different from (2.19). Newell & Whitehead arrived at (2.29) by 
a more direct method. 

In  our problem, we could choose an initial infinitesimal disturbance like that 
considered by Newell & Whitehead, with some selected preferred direction; it 
would only be necessary to require f l  in (2.23) to be a slowly varying function of 
x - y / m ,  in addition to its dependence on x + my,  since this would allow for slow 
variations across the planes x+my = constant. However, the relation (2.15) be- 
tween c, a and ,8 cannot in general be put into the form (2.26) and, indeed, does 
not seem to permit any further simplification. In  consequence, the governing 
equation for A is still (2.19) and the effect of the slow variation in f l  is reflected 
onlyin the initial condition on A .  Thus the equation (2.29) for BBnard convection 
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is seen to be a very special case, valid only for certain values of the coeEcients 
in (2.15) and for situations when the equivalent of Squire's theorem has a specially 
simple form. 

It will be recognized that our object in this section has been to derive the basic 
amplitude equation (2.19) by simpler means than have been normal in previous 
literature, for example in I. Although we believe that the analysis given here is 
significantly simpler than in I, it remains a fact that if higher order terms are 
requiredfor win (2.18) as detailed a method as that in I will still be necessary. 
Especially, we note that such an analysis might be needed in order to obtain 
the equation for the amplitude function A2(r, [) of I (equation 4.8). However, 
so long as our main interest is in the amplitude equation (2.19), this need not 
concern us. 

3. The fundamental equation: some possible terminal solutions 
We begin our study of the equation (2.15) satisfied by A by neglecting the 

variation of A with 7 and by taking all the coefficients t o  be real. Then, without 
loss of generality, the governing equation can be reduced to a canonical form 

together with the boundary condition A -+ 0 as 
condition 

where A is a small positive constant. 

(1.18), and it becomes infinite at a finite value ro of r, with 

-+ 00 for all r and the initial 

A z (A/7?Z)e-62/4T (r < l),  (3.2) 

The form of the solution when A is independent o f t  has already been given in 

A[2(r0-r)]?Z -+ 1 as r -+ 7;. (3.3) 

Thus one possible limiting structure for A has a singularity for all [ at a finite 
value of r, but since the initial condition on A is [-dependent, such a limiting 
form must allow for A to be a function of [ near r = 70. If we write 

A[2(r0-7)]% = 1 +B(r , [ ) ,  (3.4) 

where IBI < 1 near r = ro, the linearized equation for B is 

8B PB 
B +B+l  a~ at2 T o - r  

and we cannot find a solution (depending on both r and 6) which tends to zero 
as r tends to T ~ .  In  addition, the limiting form (3.3) does not satisfy the boundary 
condition as 161 -+ 00, which makes it unlikely to be the correct limiting form of 
any solution of (3.1) which vanishes at infinity initially. 

A second possibility for the limiting structure is that A tends to a function of 
only, as r -+ co. Such a limiting form exists but is periodic in [, with a period 
depending on the amplitude, and does not satisfy the condition A -+ 0 as 15) -+ co. 
Although such a failure is not necessarily lethal, since the limits 6 -+ 00, T --f 00 

-- 
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have not been proved to be commutative, we can establish that A cannot change 
sign if it  is initially positive. For the formal solution of (3.1) can be written 

(3.5) 

Suppose A first vanishes at c = e2, when 7 = 7 2 -  For all 7 < 7 2  and finite c, 
A > 0 and, from (3.5), A ( T ~ ,  6 )  > 0 for all 6, contradicting A(72, $ 2 )  = 0. 

Even when A changes sign initially, which might happen if for some reason the 
leading solution of the form (2.8) had a zero coefficient it is unlikely that A could 
become finitely oscillatory as 7 -+ 00. For in order to do so, an infinite number 
of zeros of A would have to be produced as 7 increased t o  infinity, which would 
require minima of A ,  originally positive, to become negative. But when the 
value of A at a minimum is zero, > 0, from (3.1), and A is increasing at 
that point and so cannot become negative. In  a similar way, the alternative pos- 
sibility that maxima of A which were originally negative could become positive 
can also be ruled out. The argument can easily be extended to cover the possibility 
that the second or higher derivatives of A with respect to < also vanish when a 
minimum or maximum value of A becomes zero. 

A third possible limiting structure is for A to become’singular at  a finite 
value of 7 but at  a single value of 6. The simplest way in which this might happen 
would be for A to take the form 

where we are supposing that the singularity occurs at 6 = to when 7 = T,,. Such 
a form achieves a balance between the three crucial terms of (3.1), namely 
aA/87, a2A/ac2 and A3, and on substituting it into (3.1), we find that 

g”-<gS’ = 9-93 (3.7) 

as 7 -+ 70 and that the boundary conditions are g’(0) = g(co) = 0. Although this 
equation looks hopeful, it has been established rigorously by Brown, in the 
appendix to this paper, that all solutions of (3.7) with a local maximum at [ = 0 
must become negative at some value off > 0. Since we have already shown that 
A > 0 for all finite 6 it follows that there are no acceptable solutions of (3.7). 

However, the forms (3.3) and (3.6) together contain the essentials of the 
appropriate structure, although as a historical fact it needed a study of one 
numerical solution of (3.1) to provide the key and to give the necessary con- 
fidence to unlock the secret. The difficulty is that (3.3), which corresponds to 
taking g([) = 1, makes A [ ~ ( T ~ -  T) ]+  -+ 1 as 161 -+ 00, while, if g(0) > 1, A vanishes 
at a finite value of [, and if g(0) < 1, A has a minimum at f = 0. Thus g(0) < 1 is 
too small, but any g(0) > 1 is too big! The way of escape from this difficulty 
is to refine the definition of f in (3.6) by introducing an appropriate power of 
log ( 7 0 - ~ ) - 1 .  In  the next section we set UP a consistent expansion of A in the 
neighbowhood of 7 = 70 and 6 = E0. 
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4. The instability burst 
We assume that A becomes singular a t  ( = to when r = ro and define 

(2s)-9B(s, [) = A(T, (), (4.1) 

where s = T 0 - 7 ,  [ = p((-[o)s-+ 

and p is a constant to  be found. Then B satisfies 

It is surmised that fs(s, 0) -+ 1 as s -+ 0,  but we must not assume that, when s is 
small, B is a function of 5: only, for this leads us back to (3.7). We introduce 
logarithms of s and write 

The equation for B is then 

(4.4) 

The power of (T in the definition of < was chosen to  effect a balance between the 
first two terms on the right-hand side of (4.4). The leading term in the expansion 
of B in descending powers of (T is found by neglecting the right-hand side of 
(4.4), giving 

where ji is a constant, interchangeable with p .  Without loss of generality, we 
take p = 1 ; the value of p will then be fixed by the required consistency of the 
expansion of B. 

The next step is to set up a formal expansion of B in descending powers of (T: 

B = [1 + j j 2 c 2 ] - $ ,  (4.5) 

where B, = (1 + C2)-9,  and, when (4.6) is substituted into (4.4), we obtain 

3 
B,+<Bi--B, 1+g2  = G,(C) (n  3 1) ,  (4.7) 

where Gn is a functional of B,, B,, ..., Bn-l. Hence 

and it may easily be seen by induction that B, + 0 as < + co for all n. It is also 
crucial, however, that B, be an analytic function of 5 at = 0,  since otherwise 
the expansion (4.6) is not uniformly valid a t  the most significant place. If the 
integrand in (4.8), when expanded in ascending powers of C,, contains a term 
proportional to c,', B, would have a term proportional to c21og 5 and this would 
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lead to a term in Bn+l proportional to log 5, which would destroy the validity of 
the expansion. Hence 

A further deduction from (4.8) is that Bn(0) = - +G,(O). 

(4.9) Gi(0) + 3G,(O) = 0. 

The coefficient of rl, when (4.6) is substituted into (4.4), gives 

G, = 2 9 B 6  + CBh, (4.10) 

and the consistency equation (4.9) gives 

6p2 = 1. (4.11) 

The value of B, can then be found by integrating (4.8) and is 

(4.12) 

where ylo is a constant to be found. We have now completed the structure of the 
dominant part of B near r = ro and it is instructive to write it in the original 
variables: 

(4.13) 

Comparison with both (3.3) and (3.6) shows how near each is to the correct 
description. We can describe the significance of (4.13) as follows. The spreading 
out of the initial disturbance, which is characteristic of diffusion equations, is 
dominant at  small times when A3 is negligible, but near f = <,, this spreading 
is overtaken by a tendency to focus, when A3 is significant. The increase in A 
near < = f a  rapidly gathers pace and, at a finite time, the solution bursts into 
a singularity there. 

The present theory, which is based on the leading term in an expansion in 
powers of &A, breaks down when &A = O(1). Hence (4.13) is only valid up t o  a 
time r = ro - O(e), and the extent of the region occupied by the burst is then 
I < - < o l  = O(e4llogelt). In  physical terms this means that, if the burst occurs 
at  a time to, (4.13) holds up to a time to - O(h/Uo), and that the region where large 
values of A can be found then occupies a length O(hllogsl*) of the channel. 

All is not quite well, however, with the expansion (4.6). On attempting t o  
determine B, we find that 

G, = $Bi + CBi + ZB, + 3BOB2,, (4.14) 

so that G,(O) = $ ~ i o + t ,  Qi(O) = - 2 ~ 1 0 - 3 ,  (4.15) 

and (4.9) is violated whatever plo is chosen. 
The remedy is fortunately simple, at least in principle, and is well known in 

the literature of asymptotic expansions. The assumed form (4.6) is incomplete 
and must also include powers of log cr. The leading terms can be written as 

log2 CT log 0- 1 + 52p11 log cr + - 0 2 ( 5 )  + C&) + az B2(5) + o ( r 2 ) .  (4.16) 
cr(1 +p)+ cr2. 
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The equation for D, is the same as (4.7) with G, replaced by 3p;0c4(1 + cz)-$,  
so that 

(4.17) 

The equation for C, is also the same as (4.7), but with a complicated right-hand 
side depending on the first three terms of the expansion (4.16). We shall not 
write it down, but note that the consistency requirement (4.9) is met for all pll; 
this is not fortuitous, but a direct consequence of the fact that it is not met by 
(4.15). From this equation we deduce that 

Q Z ( 0 )  = -$P11* (4.18) 

The equation for B, is now modified by the addition of a term - 2pI1c2( 1 + (2)-$ 

to the right-hand side of (4.14). It follows from (4.18) and (4.15) that 

G,(O)  lo+$, Gi(0) = -2p10-?$-4p11 (4.19) 

and the consistency equation (4.9) is satisfied if 

P11 = -8. (4.20) 

The expansion may now be continued indefinitely. Presumably the constants 
associated with D,  and C, are determined from the terms of order c - 3  in the 
expansion and we should also get a relation connecting the constants plo and 
pz0 associated with B,. If a similar difficulty to that which arose with B, in (4.15) 
should appear, it would only be necessary to add more terms involving appro- 
priate powers of log r ~ .  The same remarks apply at  each stage of the expansion. 
There must be an infinite number of arbitrary constants in the expansion, of 
course, but it is an open question whether they all occur in algebraic terms, or 
whether there is a finite number (possibly only one) associated with each of the 
infinite number of exponential terms from (4.4), each of which in turn is multiplied 
by an algebraic series like (4.16). 

For a comparison with the numerical integration described in the next section 
the asymptotic expansion of A(T,  to) is useful. The terms found in this section give 

where plo is an arbitrary constant. 

5. Numerical investigations 
The numerical work was undertaken in order to provide clues to the structure 

of the solution of (3.1) and to confirm, if possible, the analytical form of the 
asymptotic behaviour near the instability burst. The problem was to solve 

with conditions 

A - t O  as E+m, 

A M ( A / r f )  e-52/47 for r < 1. 
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Two different fhite-difference methods were used. If A, and 2j denote the 
values of A a t  E = jh ,  at times 7 and 7 - K,  respectively, the nonlinear term can 

( 5 . 5 )  
be written 

Using backward differences for the time derivative and neglecting terms O ( K ~ ) ,  
we obtain the finite-difference form of (5 .1):  

- A,-, + ( 2  + K-lh2 - h2( 1 + 323) )  Aj - Aj+, = h2Xj(K-l - 2 4 ) .  (5.6) 

The second method was to use backward differences for the time derivative, 
but to use an iterative scheme to deal with the nonlinearity. If A\?) denotes the 
nth iterate of Ai, the equation is 

with starting values at each step given by A$O) = xi. The two methods were of 
comparable efficiency. The advantage of the matrix in (5.7) remaining the same, 
except when the step lengths were changed, was balanced by the necessity to 
perform several iterations for each time step. 

The value of h, the step length in [, was kept fixed during each calculation. 
Initial trials suggested that h = 0.05 would be sufficiently small, but later calcula- 
tions were done with h = 0.025. The value of K ,  the step length in 7,  was reduced 
whenever the maximum value of A 2 ~  exceeded some small number, usually 0.02. 
This condition, which was suggested by the balance between the terms a A / h  and 
A3, was necessary in order to keep the relative change in A at each step small. Too 
large a value of K could result in the singular behaviour being completely missed. 

The boundary condition at  5 = 0 was incorporated into the set of equations 
by using the equation a t  5 = 0 ,  with A_, = A,. The outer boundary condition 
was replaced by the condition A ,  = 0 at 6 = N h .  A rough guide to where the 
outer boundary could safely be placed was afforded by the solution of the linear 
equation, that is, (5 .1)  with the term A3 missing. At large distances from the 
centre, where A is small, the linear solution can be expected to hold and it in- 
dicates that, as 7 increases, the outer boundary should move outwards so that 
(Nh)2/47 remains constant and large. Values of N h  up t o  about 10 were usual, 
since the solution was only required for the limited time up t o  the appearance 
of the singularity. Instead of using an outer boundary moving in a predetermined 
way, another method was to start with the outer boundary at N h  = 10 and to 
increase the value of N h  by 1 whenever the value of A at the point next to the 
boundary exceeded 

I n  the first set of calculations the initial values of A j  were all zero, except for 
A,, which was set equal to 1, which is roughly equivalent to using (5.4) as the 
initial condition at 7 = 10-4 with A = 10-2. The calculation produced a singularity 
of the predicted form at T = 4-23. In  order to avoid a great deal of uninteresting 
calculation, during which A gradually built up to values near 1, the initial part 
of the calculation was shortened by using the linear solution 

A; = 2; + 3 2 3 ~ 4 ,  - 2,) + O(Aj - .Aj)2. 

- AP)_l + ( 2  + ~-1h2) A?) - AE), = ~ ~ ( K - I Z ~  + AP-S + [A!"-,) 3 1 1 7  3 (5.7) 

A = (A/79)e7-5'/47 (5.8)  

A = 4 e-@', (5.9) 

to determine the starting values of A,. The exact form used was 
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which corresponds t o  starting the calculation a t  T = 2 with A = 0.095. The 
maximum size of the neglected term A3 was then only one-quarter of the terms 
retained and, since similar results were obtained for the form of the solution 
near the singularity from the two initial values, it was thought that the second 
form was sufficiently accurate. The singularity occurred a t  T = 2.947, its earlier 
appearance being presumably associated with the larger value of A. 

The results of the calculations revealed the behaviour described in 94, and 
are exhibited graphically in figures 1-4. The growth of A at the two stations 
[ = 0 and [ = 1 is plotted in figure 1, which shows how the comparaOively slow 

2.0 2.1 1.1 1.3 2-4 2.5 2.6 1.7 2.8 2.9 3.0 

7 

FIGURE 1. Tho ralues of A at [ = 0 and at  6 = 1. Initial values given by (5.9). 

increase in A(r ,  0 )  is followed by a very rapid rise as the singularity a t  T = 2-947 
is approached, whereas A(T, 1) has a much more modest growth, in accorda,nce 
with (4.13). The variation of A with 5 at various values of r is shown in figure 2 .  
The calculat<ion started with values given by (5.9) ati T = 2, and the curves for 
smaller values of T were obtained from the linear solution. The initial drop and 
flattening of the distribution is followed by an exponential rise everywhere. The 
rise accelerates when the value of A exceeds 1, and the central part of the dis- 
tribution then bursts away a t  a continually increasing rate. 

A difficulty in comparing the numerical results with the theory is that the 
value of To is not accurately known. To avoid this difficulty ro - r can be replaced 
by its value in terms of A*(T) = A(r, 0). Thus (4.13) can be written 

A(r , [ )  % A, 
3 log ( 2 8 3  (5.10) 

Figure 3 shows A(r, [ ) /AO(r)  plotted against < = Ao[[log2A~]-B, together with 
the theoretical value (1 + +c2)-&, at some of the values of r used in figure 2.  At 
the centre the values agree closely with the theoretical curve, and further out 
there is a steady approach to  the limiting solution. 
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Similarly, the analytic expression (4.21) for the value of A,(T) can be written 

2 + . . .  . (5.11) 1 -N 1 1 5 log log ( 2 4 )  2p1, + 1 + - ( ~ ~ - 7 )  1 -  
2AE [ 3 log ( 2 4 )  - 9(10g2Ai)~ 3(10g 2A,) 

The computed values of (2A3-1 plotted against T are shown in figure 4 and reveal 
a nearly linear behavionr. The slow variation of the logarithms makes it difficult 
to  confirm the other terms in (5.11). With A, = 10 the ratio of the third term to 
the second is about 0.5, and this ratio is only reduced to 0.4 when A, is as large 
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2.94 

i.92 \ 
? \  

3 0 1 2 

5 
FIGURE 2. The changes in the shape of the variation of A with 5 as7 increases. The calculation 
began at  T = 2 with (5.9) as initial values, and the curves for T = 1 and T = 10-4 were obtained 
from the linear solution. 

as 100. Detailed examination of the calculations showed that it was necessary 
to use extremely small step lengths, K ,  when A, was large (for example, K = 10-4 
when A, z 7),  but also that, whenever the step length was changed, the dif- 
ferences did not fit smoothly together. The value of the coefficient 3(2p,+ I )  
of the last term in (5.11) was calculated for values of log2A; between 2 and 6, 
and, while it did not change as smoothly as was desired, it decreased from 1-7 
to 1.4 as A, increased through this range, suggesting that plo is approximately 1. 
I n  order to obtain more conclusive evidence of the accuracy of the terms in 
(5.11) it would be necessary to  use a much smaller step length in (. It is 

46 F L M  51 
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considered, however, that the numerical work provides convincing evidence t,hat 
the structure of the solution near the singularity has been obtained. 

The initial condition (5.4) is the appropriate one to use, provided the co- 
efficient A does not vanish. If A = 0, the second term in (2.7) provides the 

1.0 

0.9 

0.8 

0.7 

0.5 

0.4 

0 @ A A  

7 0 1 - 3 4 5 

5 
FIGURE 3. Comparison of the numerical solution with the theoretical value (5.10). 0, 

7 = 2.8; 0 ,  7 = 2.9; A, 7 = 2.92; A, 7 = 2.94; -, (1+$<'))-'. 

appropriate initial condition and can be found by differentiating (5.4) with 
respect to 5, which gives 

A M (AJ5-8) 5 e-5a147 for T < 1. (5.12) 

As long as the term A3 is negligible, 

A = (A@) 6 eT-f2/4T, (5.13) 

which shows that the peak of the distribution is at  the point 6 = (27)4 and that 
the maximum value increases like 7-l eT, with a corresponding minimum at 
< = - (27) i .  A limited amount of computation was done with this initial condition 
and the results agreed with the linear theory, until the maximum value became 
comparable with 1, when the nonlinear term became dominant and produced 
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a singularity of the same kind as those obtained with the usual initial condition. 
During the rapid growth, the centre of the distribution was pracbically stationary. 
The initial condition in the calculation corresponded roughly to A1 = 0.003 a t  
7 = 0.005 and the singularity occurred at  7 M 8-7.  

0. 

6. A three-dimensional burst 
We now suppose that the original infinitesimal disturbance is centred at  the 

origin, so that when the perturbations become nonlinear the amplitude function 
A satisfies (2.19) with the initial condition (2.22). We can no longer neglect the 
7 variation, but, as before, we shall confine our attention to the simplest case, 
when all the coefficients in (2.19) are real. Without loss of generality we can 
reduce (2.19) to the form 

i3A a2A a2A - = - + - + A + A 3 ,  
a7 34% 372 

with the corresponding initial condition 

where again A2 = A d  is a small positive constant. 
We shall now demonstrate that a limiting solution of (6.1) can be constructed, 

following the same lines as those successfully used in $4 for the two-dimensional 
burst. If A becomes singular at  [ = go, 7 = qo, r = 70, we define 

B ( g ,  r ,  8 )  = [ ~ ( ~ o - T ) I * A ( ~ ,  [,7), (6.3) 
46-2 
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where 
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Then B satisfies 

As in the two-dimensional problem, we now assume that B can be expanded in 
descending powers of a in the neighbourhood of a = CO, but we shall expect that 
positive integral powers of loga will also appear. The leading term of this ex- 
pansion is obtained by neglecting the right-hand side of (6.5) and is 

B, = [1+ q(0)  ~ ~ 1 - 9 ,  (6.6) 
which differs from the corresfponding term (4.5) because q is a function of 8 
and not a constant. 

The next terms in the expansion of B can be written 

log a 1 
7 B12@, 8 )  + $,k, 81, 

and, from (6.5),  B,, satisfies 

where 

B,, satisfies an equation similar to (6.8), but with the right-hand side equal to 
zero. An equation analogous to( 4.8) can be found which shows that the condition 
B,,+ 0 as r --f co is automatically satisfied, but that B,, is analytic at  r = 0 only if 

(a2Hl/ar2) + 3qH, = 0 when r = 0. (6.10) 

This consistency condition enables us t o  determine p. From (6.6) and (6.9) we have 

and 

d2q H,(O, 8 )  = -4q-- 

Substitution into (6.10) gives 

3 - +12q2-2q = 0, 

q=’ which has solutions, either 
67 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

or q = QCos2(8-r90), (6.15) 

where 0, is an arbitrary constant. 
The first solution clearly corresponds t o  a centred burst and can be expected 

to give the limiting form of A when the initial condition is (6.2), independent of 6. 

( 1  + &-”)-+, (6.16) The form 

taken by B as cr 3 co, is identical with the two-dimensional burst (4.5). 
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The second solution (6.15) is essentially two-dimensional in character since 
P cos (8 - 8,) measures distance in a direction making an angle 8, with the ( 
direction. The limiting form for B as r~ -+ co, namely 

[ 1 + +{(t - E o )  cos 8 0  + (7 - 70) sin 80)2/CJ-4-4, (6.17) 

is a generalization of (4.5) and can be expected to arise if the initial condition 
on A is derived from (2.24) instead of (6.2). As noted earlier, such a disturbance 
is probably artificial and of less interest than the point-centred disturbance, 
which leads to (6.16). 

Further terms in the expansion of B can be worked out if desired, but we have 
not done so because no new points of interest seem to arise. Consequently the need 
for terms like B,, in the expansion has not been established. Finally, we note 

r)]-*(l+ (1/3v) +o(a-l)), (6.18) 

since B,,(O, 8) = - +H,(O, 8). 

7. Subcritical bursts 
The theory described above is based on the assumption that the fiow is slightly 

supercritical. It is easy to make a formal extension of the theory leading to 
(1.12) and (2.19) to cover subcritical flows, with R < R, and IR-R,] small. It 
is only necessary to replace E by 161, then the amplitude function A(7,C) for 
two-dimensional disturbances satisfies 

instead of (1.13), with the initial condition 

A M (A/r9) e--5a/4a27 when r < 1. (7-2) 

However, A is a small positive constant and (7.1) tells us immediately that 
A --f 0 uniformly as r 3 03, which simply means that the basic flow is stable to 
infinitesimal disturbances. 

If we could choose a value for 1A 1 M 1, it is clear that the nonlinear term in 
(7.1) could be destabilizing. On the basis of a self-consistent rational theory, 
such a value of A is excluded, for the initial condition is derived from the linear 
theory. During a time t N 1, nonlinear terms are assumed negligible and all 
wavelengths in an arbitrary infinitesimal disturbance are removed, leaving only 
those which are close to 2n/a,. When t is large, but I E (  t small, we obtain (7.2) 
with A < 1. Further, whenA FZ 1, (7.2) is inconsistent with (7.1), since the non- 
linear term is not negligible in comparison with bhe linear term when T < 1. We 
are therefore reskicted to A < 1 if we insist on a self-consistent theory. 

Nevertheless the properties of the solution of (7.1) are very interesting, and it 
is likely that a study of this equation is worthwhile for the light which it may 
throw on subcritical instability and transition, which experimentally is known 
t o  occur (Davies & White 1928) at values of R N" BR,. Indeed, Reynolds & Potter 
(1967), who studied the simpler equation with a,  = 0, hazarded that a turbulence 
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level of only 2+ yo is sufficient to provoke transition when R = 1000. Although 
we have been assuming throughout that R is close to R, it should be noted that 
e is a very slowly varying function of R at a = a,; for example, when R, - R M 600, 
E = - Thus the requirement I E ~  < 1 may allow a larger range of R to be 
considered than might be expected. Also lkl z 180, so that even when 1.41 = 0.1, 
the nonlinear effect can be significant. 

One way by which an initial condition for (7.1) can be obtained is t o  take 

A N ~-@(8) as 7 3 0 ,  

F”++ZIF’++E”+klF12F = 0. 
where 8 = </(u,T)* and 

Such a form is consistent with (7.1) and would agree with (7.2) if F(0)  were 
chosen to be small, provided F’(0) = 0. There seems no doubt that an F satisfying 
(7.4) and such that F -+ 0 as 181 -+ co does exist. 

In  discussing the possible limiting structures which (7.1) allows we shall 
abandon that part of the rational argument which fixed the initial condition as 
(7.2). Instead, we shall take the initial condition to be arbitrary, and write 

A = A,([)  at T = 7,. (7.5) 

The only restriction on A ,  is that we require A ,  + 0 as (51 -+ 03. One possible 
limit is clearly A -+ 0 as T -+ co, and provided A ,  is sufficiently small, this limit 
will be achieved. In  other words, the steady flow is stable to sufficiently small 
disturbances. In  order to make further progress, we take a,, d, and k to be real 
and defer the complex problem to another paper. 

A second possible limit as T --f GO is A -+ A,(c),  where 

A,(<) = (E)’sechf. 5 
a2 

which satisfies (7.1) with the time derivative absent. This limiting solution can, 
however, be shown to be unstable. We write 

A = A,( [ )  +A,(C) ehr, (7.7) 

and we must have Reh < 0 if A -+ A,, as T -+ co. Substituting (7.7) in (7.1) we 
obtain the linear equation 

a,A; - (1 + A )  A ,  + 3lcA$4, = 0, (7.8) 

(7.9) 

and the eigensolutions A ,  must satisfy A,  -+ 0 as ( $ 1  -+ co. One possible eigen- 
solution is 

and the corresponding eigenvalue is h = 3. This positive eigenvalue establishes 
the instability of (7.6) as a possible limiting solution of (7.1). 

A stable limiting solution of (7.1) can be expected to be the same as that dis- 
cussed in $4 ,  since when A is large, the linear term on the right-hand side of (7.1) 
is insignificant. We conclude that with sufficiently weak initial disturbances the 
steady flow remains stable and the disturbances die out. On the other hand, if 
the initial disturbances are sufficiently large and R, - R, although positive, is 

A ,  = A ;  
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not too large, the disturbances grow indefinitely and terminate in an instability 
burst at  a finite time. 

These ideas about the structure of the limiting solutions of (7.1) have been 
tested numerically, using the methods described in $5, for the particular case 
a2 = d, = Jc = 1. The initial values chosen were of the forms 

4 6 )  = %exP ( -c2t2), (7.10) 

and A,([)  = c1sech ( C Z E ) ,  (7.11) 

where c1 and c, are constants. Both types of predicted behaviour were obtained. 
When the initial value of aA/& at = 0 was positive, the value of A in the 
neighbourhood of that point began to increase, the increase continuing until an 
instability burst was produced. The numerical results suggest that, for initial 
disturbances centred at ( = 0, a sufficient condition for an instability burst is 

a2Alpp-A,+A; > 0, (7.12) 

at 6 = 0. This condition is not necessary, since some solutions were obtained in 
which the central value of A initially decreased as the diffusion spread its effect 
outwards, but nevertheless A remained sufficiently large for the A3 term to 
become dominant, resulting in an instabiliky burst. Usually, however, an initial 

PA,/8g2 - A ,  + A! < 0 at 5 = 0 (7.13) profile for which 

resulted in the initial decrease in the value continuing unchecked and the whole 
disturbance dying out. 

In  figure 5, the values of A, and of a2A,/a[2 at 6 = 0 for the various calculations 
are shown. At the points labelled B the solution produced an instability burst, 
but at those labelled D the solution died away. It can be seen that the curve 

PAl/at2 = A,-  A; at = 0 (7.14) 

provides a division between the two sets of points, except for the two points 
close to this boundary where the solution produced a burst, but the value of A 
initially decreased. 

Point-centred disturbances t o  flows at  subcritical Reynolds numbers can be 
discussed in a similar way. The governing equation for A becomes 

with initial condition 

r 

(7.15) 

(7.16) 

As before, A, < 1 and we would like to relax this condition so that A N 1 when 
7 > 0. Even if A,  1, (7.16) is not consistent with (7.15) for, at [ = 7 = 0,  the 
nonlinear term N Air-3, while the linear terms N A,+. However, this non- 
uniformity can be overcome by supposing that the initial condition is imposed 
at a value of r N A;, where 8 < n < 1, or alternatively, by making a shift of 
the origin of T on the left-hand side of (7.16) by an equivalent amount. Otherwise 
the situation is similar to the two-dimensional problem. 



728 L. M .  Hocking, K .  Stewartson and J .  T .  Stuart 

If all the coefficients in (7.15) are real, we can describe three possibIe limiting 
solutions. First, A -+ 0 as r --f 00, which is a stable solution and, provided A is 
sufficiently small at  T = 0, will vanish in the limit T --f co. Second, there is a finite 
limit lc-&A, ( r  ), where 

A ; + ( l / r ) A : - A , + A 3 ,  = 0, (7.17) 

,r2 = a;1[2+b;1r2 and A ,  --f 0 as r --f co. Further, A’,(O) = 0 to presert-e A ,  as a 
smooth function of and 7. No simple solution of (7.17) has been found, but a 
numerical solution has kindly been computed by Miss S. M. Burrough on behalf 
of the authors. With the additional constraint A ,  > 0 suggested by the arguments 
in $ 3  she finds that there appears to be aunique solution, for which A,(O) = 2.206. 

A ,  
I 2 3 

FIGURE 5 .  The values of A, and 8?A,/252 at 5 = 0 used in the solution of (5.1) with 
a2 = (E, = k = 1. B denotes those values for which the solution showed a, burst and D those 
for which the solution died away. Also shown is the curve (7.14). 

A similar problem to (7.17) has been extensively studied in connexion with 
certain problems in elementary particle physics [see Anderson & Derrick (1970) 
for details and further references]. The only change is that the term r-1AL is 
replaced by 2r-lA;. It has been shown that there is an infinity of solutions of this 
eqllation and in all but the simplest A ,  vanishes at least once in r > 0. Further, 
in the context of the nonlinear wave equation, the solutions are unstable, leading 
to bursts similar to  those discussed here. It seems quite likely therefore that there 
is also an infinite number of solutions to (7.17) and that they are a11 unstable. 

The third limiting solution can be expected to be the same as that discussed 
in $6,  for again the sign of the linear term on the right-hand side of (7.15) is 
insignificant when A is large. AS in the case of the two-dimensional disturbance, 
mTe conclude that a point disturbance, which is sufficiently large initially, can 



A nonlinear instability burst in plane parallel $ow 7 29 

grow when R < R, and then terminates in an instability burst, the last stages of 
which, when ro-r  = O(e), cannot be described by the present theory. 

8. Discussion 
The notion of a rational theory in fluid mechanics was explained by Van Dyke 

(1964) and may be restated in the following way. The region in which we are 
interested is divided into a number of domains and in each the solution is ex- 
panded in a consistent series of ascending powers of some small parameter E .  

The various domains are also assumed to intersect in some sense and the ex- 
pansions are matched in these intersections. Thus, so far as can be tested, the 
solution is fully consistent but, on the other hand, the theory is by no means 
rigorously established. It remains to prove that the series are asymptotic and 
that the domains in which they are valid do intersect. Nevertheless, we con- 
fidently claim that the results are correct and that a rigorous proof would estab- 
lish the validity of the assumptions. 

In  the present problem the situation is complicated by the presence of two 
small parameters, A and E ,  one representing the amplitude of the initial dis- 
turbance and the other the growth rate of the unstable mode according to 
linearized theory. Thus, strictly, a double asymptotic expansion is required; but 
it happens that it is only necessary to consider the leading term in the A ex- 
pansion. In  the first domain considered, defined by t < co, e plays no special 
role and the development of the solution to order A is firmly based on linearized 
theory and the Om-Sommerfeld equation. When t is large but et ie small, this 
theory predicts that a general initial disturbance will grow exponentially with 
growth rate E .  The second domain considered is t $ 1, et = r N 1, and here the 
theory is based on the nonlinear studies developed in earlier papers (Stuart 
1960; Watson 1960a; Stewartson & Stuart 1971). In  this domain the leading 
term of the perturbation is O ( d )  independently of A and the two solutions are 
matched in the intersecting part of the two domains, namely t % 1, et < 1. 
The presence of A in the solution in the first domain and its disappearance from 
that in the second can be accounted for by an origin shift in t N log Ae. 

In  contrast, much earlier work has considered either the linear Orr-Sommerfeld 
equation only, and therefore restricted attention to the first domain, or non- 
linear developments involving interactions between one or more normal modes, 
which, while being very interesting and offering clues to the understanding of the 
transition problem, are not rational in the sense used here. Examples of linearized 
analysis are afforded by the studies of Benjamin (1961), Criminale & Kovasznay 
(1962) and Gaster (1968a, b)  on the evolution of two- and three-dimensional 
wave systems, essentially (in our terminology) according t o  the linearized forms 
of (1.12) and (2.19). On the nonlinear side, the interesting studies by Benney and 
Lin (Benney & Lin 1960; Benney 1961,1964; Lin & Benney 1966) oninteracting 
three-dimensional modes are not rational, because they utilize an empirical 
assumption of the equivalence of the two wave speeds, which, after ten years, 
is still as far as ever from justification. We shall return to this point later. An 
exception to this general criticism is provided by the work of Stuart (1960) and 
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Watson (1960a). Their studies are rational in our interpretation, but concentrate 
on the nonlinear evolution of normal modes, so that the initial-value problem 
solved by them is very special indeed. We believe that the present description 
for the first time unifies the study of the evolution of small disturbances at  
Reynolds numbers just above the critical and provides a firm base for further 
development. 

Having obtained a description of the nonlinear development of the disturbance 
in terms of the solution A of a partial differential equation, the rest of the paper 
has been concerned with a discussion of some of its main properties. Earlier, the 
properties of A when it is a function of r only have been studied by Stuart (1958, 
1960) and others, who introduced the notions of amplitude equilibrium and of a 
threshold amplitude requirement for instability. In  this paper we have begun 
to extend these ideas by requiring A to be a function of position as r --f 0, but 
have added the simplifying assumption that all the coefficients of the differential 
equation are real. The principal new result which emerges is that of the explosive 
‘burst ’ of the nonlinear oscillations at some finite value ro of r (  = et) and at  one 
point only, either of 5 in two dimensions or of 5 and 71 in three. The burst is 
characterized by a singularity in A and it should be borne in mind that the 
theory ceases to  be rational at  such an event, although it is formally valid up 
to r = r,, - O(e). I f  this phenomenon of focusing and bursting is characteristic of 
solutions of the differential equation even when the coefficients are not real,? 
then we may conclude that an initial small disturbance, which linear theory 
predicts will travel downstream with the group velocity, growing in amplitude 
and spreading outwards, will, through the agency of nonlinear effects, ultimately 
concentrate energy towards the centre of the disturbance. The amplitude will 
grow explosively until, in a region O(h(logel*), i.e. of order just larger than the 
depth of the channel, the assumption of small disturbances fails and the theory 
ceases t o  be valid. 

It is natural to wonder whether the present work has relevance to the study of 
instability and transition in parallel shear flows and turbulence. Of specialinterest 
is the question of the relevance of the self-focusing burst to the embryo turbulent 
spots noticed and recorded in some detail by Klebanoff, Tidstrom & Sargent 
(1962), Kovasznay, Komoda & Vasudeva (1962), Tani (1969) and Komoda (1967). 
In  its explosiveness the phenomenon of the burst, as described in this paper, 
certainly bears a superficial resemblance to those observations of turbulent spots. 
It would be premature to claim more at  this stage of the development of the 
theory, however. In  the first place, the rational part of the theory is restricted to 
Reynolds numbers just above R, and it must be conceded that a basic assumption 
of the theory, namely that the flow is initially fully developed and undisturbed, 
is unattainable in practice at  such values of R. Second, spots have mainly been 
observed in boundary layers, at Reynolds numbers R N 3R, (Klebanoff et al. 
1962); on the other hand, in plane Poiseuille flow transition occurs at  R N QR, 
and the relevance of spots is not known. Third, the embryo spots (or break- 
down) as described, for example, by Klebanoff et aZ. (1962) and illustrated by 

Note added in proof. A subsequent description of the properties of the solutions when 
the coefficients are complex has been given by Hocking & Stewartson (1971, 1972). 
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detailed figures in Komoda (1967), show a strong three-dimensional character. 
Our theory does permit a three-dimensional eruption ($6),  but its exact character 
for boundary layers cannot be forecast yet. However, there are indications that 
its three-dimensional character is weak (/? < a,). In  the experiments quoted above 
p N a,, but the disturbances are forced by a vibrating ribbon with corresponding 
and imposed spanwise variations. 

The weight of current descriptions of spot formation in experiments generally 
ascribes it to the ‘nonlinear effect of a three-dimensional perturbation ’ (Klebanoff 
et al. 1962). [Their paper makes it clear that in certain regions known as ‘peaks’, 
local shear layers develop and shed ‘spots ’ of high-frequency velocity fluctua- 
tions. Theories ascribing the spot to a local instability of the shear layer have been 
given by Greenspan & Benney (1963) and Stuart (1965).] However, the fact that 
three-dimensional and nonlinear effects occur together does not prove that these 
aspects are necessarily of equal importance for spot, formation, although a number 
of empirical arguments are suggestive. The plain fact of the matter is that, in 
spite of a wealth of beautiful experimentation, no theory remotely adequate to 
explain them has so far been advanced. The most significant of such theories 
is perhaps that of Benney & Lin (1960), Benney (1961,1964) and Lin & Benney 
(1966), which has often been favourably assessed (Klebanoff et al. 1962; Tani 
1969; Mollo-Christensen 1971) by experimenters. In  this theory it is found that 
the interaction of a two-dimensional wave (like (1.2)) with two three-dimensional 
waves (like (2.12), but with /?taking two valuesequal in magnitude but opposite 
in sign) can lead to a longitudinal vortex system with greatesb strength near the 
convex part of theKelvin cat’seyes. However, asStuart (1961,1962) immediately 
pointed out, the theory makes the unjustified assumption that the corresponding 
values of cr are equal for the two- and three-dimensional waves, whereas they are 
known to differ by a factor of order up to 15 yo in Blasius flow. Thus the theory 
is not rational in Van Dyke’s sense. For it to be so, it would have to be restricted 
to the neighbourhood of R = R, and to /? < 1 in order to keep the phases of the 
waves the same. It would then reduce to a form equivalent to, and indeed almost 
identical with, the theory of the present paper. As it  is, the assumption of 
synchronization is formally unjustified, since the interaction takes a time e-l 
to develop and the phase coherence on which the theory depends has then been 
completely lost. We further note that the claim of substantial agreement between 
their theory and the experiments of Klebanoff and others, can easily be destroyed 
if the theoryis empirically modified to allow for thisphasedifference (Stuart 1961). 
Thus, although the Lin-Benney theory is interesting and suggestive, it cannot be 
regarded as explaining the phenomenon of longitudinal-vortex structure followed 
by embryo spots. In  view of the limitations already mentioned, it would be 
premature to claim that the burst found here is necessarily relevant to embryo 
spots. Nevertheless, the theory shows for the f i s t  time that nonlinear effects 
can lead to focusing and, since it is self-consistent, the theory also provides a 
firm basis for further research. 

Another aspect of nonlinearity which may be worth noting is related to the 
assumption of initially undisturbed and fully developed plane parallel flow in 
our theoretical work. In  a boundary layer the spread of the basic flow leads to 
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a.n increase in the Reynolds number with downstream distance. Consequently 
a wave which initially may be close to the critical Reynolds number propagates 
into regions where the Reynolds number is higher. However, in such regions a 
broader band of three-dimensional waves is possible, as the work of Watson 
(1960b) and Michael (1961) shows. If we couple this feature with the idea of 
‘resonance’ of three-dimensional oscillations (Raetz 1959; Stuart 1962; Craik 
1971) we have one possible mechanism by which three-dimensionality can be- 
come important in association with nonlinearity. The validity of such mechanisms 
remains to be assessed. 

Finally we note that, just before the first submission of this paper, Dr M. Gaster 
informed one of us (J.T. S.) that, in an uncompleted independent investigation, 
he had extended his earlier work (1968a, b )  and conceived amplitude equations 
similar to (1.12) and (2.19). 

One of us (K. S.) is grateful to Prof. G. L. von Eschen of the Department of 
Aeronautical and Astronautical Engineering, The Ohio State University, for 
providing hospitality while the final revision of this paper was being made. 

Appendix. On the differential equation j: = t i  + x - x3 

By S. N. BROWN, University College, London 

In  the main body of the paper the authors noted that a possible similarity 
solution t o  their partial differential equation (3.1) given by the ordinary dif- 
ferential equation (3.7) is unacceptable because the required boundary conditions 
cannot be satisfied. With a change of notation to facilitate comparison with 
kinematics, the equation is X = t i  + x - x3, and the solution is to be such that x(t) 
has a positive maximum at t = 0, and x(t) --f 0 monotonically as t + co. This 
means i ( 0 )  = 0 and 2(0) < 0, and requires x(0) = 1 +a (a  > 0). The following 
theorem establishes, as stated by the authors, that with these initial conditions 
x(t)  = 0 at a finite value oft. 

THEOREM. Suppose x( t )  is a real function oft satisfying 

2(t)  = tk(t) + x( t )  - x3(t) when t 2 0 (A 1) 

and i(0) = 0, x(0) = l + a  (a  > 0).  (A 2) 

Then x( t )  = 0 for some t .  
We think of the equation as determining the motion on the x axis of a particle 

P subject to two forces: one being an attraction to the point x = 1 and the other 
depending on its velocity. Initially P is at  rest at  x = 1 +a, its acceleration is 
-a( 1 +a) (2 +a), and the acceleration remains negative and the speed of P in- 
creases as long as x > 1. P therefore reaches 1 ; suppose it does so for thefirst time 
when t = t, and write i ( t l )  = -ul. I f  X(t)  remains negative when t > t ,  and 
0 < x < 1, the speed of P will always exceed u1 and P will reach the origin. This 
will be shown to be the case. 

We shall apply the following simple deductions from the mean-value theorem 
for the function x(t) .  
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(if If  %(t) < 0 for 0 < t < k, then x(t) - (1 +a) > tg(t), and hence (1 +a-x(t))/t 

(ii) If  %(t) > 0 for 0 < t < k, then x(t)  - (1 +a)  > 4t2Z(0) throughout (0, Ic]. 
In  particular, we deduce from these that 

increases with t during this time. 

t,u, ' a, (A 3) 

that at' < t,(l +a-x(t')} (A 4) 

provided that x(t) < 0 when 0 < t < t' and t' > t,, and that 

(A 5 )  
2 

t1 > ( I + & )  (2+a) 

if Z( t )  > 0 throughout (O,t,).  
The result to be proved is intuitively obvious for large a, for in this case the 

speed of arrival of P at 1 is so large that it cannot be reduced by the attractive 
force so as to prevent P from reaching the origin. It is in fact easy to prove the 
theorem when a > 0.1. To see this note that if 2(t) < 0 throughout (0, T), then 
by (A 1) and (i) 

2(t) < -x3+2x-l-a in (0 ,T) .  

A simple calculation shows the maximum of - x3 + 2x - 1 when x > 0 to be less 
than 0.1. Thus if a! > 0.1,Z remains negative as long as 0 < x < 1 and P reaches 
the origin. 

For a general proof we have to consider x and xiv. We display the information 
about x@)(t), (more especially at  t = 0 and t = t,) in table 1. 

It will emerge that t, < 1, i.e. 2(tl) > 0; this makes it plausible that 2(t) ,  
negative at  t,, might become zero. However, it will be shown that this is offset 
by the negative values of xiv(t) when t 2 t , .  

We prove first that 
0 < 1-t ;  < $a, 

equivalent by (A7) to 
0 < qt , )  < &Ul. 

To prove that %(t,) > 0, we note first that, since 2(0) = 0 and xiv(0) > 0, there 
is an interval, say (0, T] with T < t,, in which x( t )  > 0. t2--9 therefore increases 
in (0,7] from 0 to some positive value p .  As long as T < t < t ,  and %(t) > 0, we 
h a v e t Z - ~ > p a n d s o , b y ( A 7 ) , % > p + 3 ( 1 - x z ) 5 .  Since 1-xzandgareboth 
negative, this means %(t) > p as long as Z ( t )  > 0 and T < t < t,. Hence Z(t l )  3 p. 
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Noting that 2(tl) = ul( 1 - t:), we have the first parts of (A 9) and (A lo),  and by 
using (A 5 )  we obtain 

3a + a2 
( 1 + a) (2 + a) ' 

which completes the proof of (A 9) and (A 10). 
Our aim is to prove that x, negative at  t,, remains negative until x = 0. If we 

show that x < 0 as long as x 2 di, it will follow that i < -ul during this time, 
and x will reach J$ (with i < 0 and x < 0). After this, for as long as x < 0, we 
shall have 2 < 0 by (A 7)  and consequently 2 < 0 until x = 0. 

1-t;  < 

We show first that while xiv(t) < 0 and t > t,, 

2 < - &4t1(3x - 1). (A 11) 

Since t ,  < 1 and 1 -t: < $a by (A 9), and u1 > a by (A 3) ,  we have immediately 
from (A 8) that xiv(tl) = u,(t,( 1 - t f)  - S U ~ }  < 0. Suppose xiv(t) < 0 for t, Q t < t,. 
Now x(t)  is negative at t = t,, and as long as this persists we shall have 

Thus 

Z ( t )  - 2(tl) 2(t*) 
x( t )  -x(t,) k(t*) 

=- for some t* in (t,, t ) .  

1 - x( t )  
- x(t*) U1 

1 - x(t)  
i ( t )  - 2(tl) = -2(t*) < - X(tJ 

since x decreases in [t,, t,]. Because 2(tl)/ul < $a < $ult,, from (A 10) and (A 3),  
and Z(tl) = -ultl,  (A 11) follows from (A 12). 

48, 2(t) is less than the negative 
constant - &~1t1(2/6 - 1); in these circumstances 2 is never zero in [t,, t,], and it 
follows that as long as x B ,/# and xi"@) < 0 we have Z(t )  < 0. 

Assembling the inequalities proved above, we have, for as long as x 2 4% and 
xiv(t) < 0, 

Thus, for as long as t ,  < t < t ,  and x 

2 < $aU1, d < &4,tl(l-3X), tLX < (l+LX-X)tl 

(the last from (A 4)). Applying these to (A 8) we obtain 

X'"(t)  < $U1t,( 1 + a - X) + $ultl( 1 - 3 ~ )  (1 - x') - 64$ U! 

= $u,t,(l - x )  (2-3x~-2x)+$u,(atl-42/~u1).  

Since at, < a < ul, by (A 9) and (A 3) ,  we deduce from this that, while 3x2 > 2 
and xiv(t) < 0, xiv remains less than the negative constant; $u;(l- 443). This 
means that xiv(t), and consequently $(t), remain negative for as long as x 3 43. 
This completes the proof. 
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